
S3D Pascal Bindings
by Kostas Michalopoulos

http://runtimeterror.com/
badsectoracula@gmail.com

ABSTRACT

This document describes the S3 Virge S3D API bindings for Free Pascal and
Delphi. It includes some brief documentation for the API, though the official docu-
mentation isn't really that much better :-P.

1. About

S3DTK is a unit for Free Pascal and Delphi that provides bindings to the S3D
API, used by the S3 Virge family of GPUs. The unit has been tested with Free
Pascal 2.2.4 (the last version of Free Pascal to support Windows 95 out of the
box) and Delphi 2 (though for Delphi i only tested that the unit compiles - to actu-
ally use the unit you need DirectDraw support and i do not know of some bind-
ings that work with it - there are DirectX bindings for Delphi 4 and later however,
so at least the unit should be useful for those).

I wrote this unit mainly in the interest of retrocoding - my main PC during the late
90s and early 2000s had an S3 Virge with a Pentium MMX and at the time i
wasn't even sure if the card actually supported 3D rendering. Turns out it did, but
it took a while to figure that out.

2. Quickstart

The official documentation is very sparse, but as a quickstart here is what you
need to do:

• Create a fullscreen window to render into
• Initialize the library with S3DTK_InitLib.
• Create a renderer with S3DTK_CreateRenderer.
• Create an IDirectDraw instance - DirectDraw is mainly used to manage video

memory.
• Setup exclusive and fullscreen cooperative level and set the video mode to

640x480x16bpp or whatever.
• Obtain the base of the framebuffer (see below) to use for calculating surface

offsets.
• Create a primary surface with a secondary buffer attached to it to act as a

swap chain.

S3D Pascal Bindings

• Create two TS3DTK_SURFACE variables to hold info about the surfaces. S3D
actually needs very little info about a surface: its size, pixel/texel format and
the offset in video memory from the framebuffer. This bit is the trickiest one.

• Optionally create a 16bit surface to hold a z buffer - again you need to do this
via DirectDraw and TS3DTK_SURFACE.

And that is about it. Beyond that it is mainly setting state and drawing triangles. In
terms of memory management, S3D relies on DirectDraw to do the video mem-
ory allocation/etc so in general the process is allocating a DirectDraw surface and
filling a TS3DTK_SURFACE variable with info about it. The S3D API itself does
not actually know about DirectDraw, it is only used indirectly to obtain the mem-
ory offsets and to perform surface flipping. In theory it might be possible to allo-
cate a big surface and chop it to smaller pieces with multiple TS3DTK_SUR-
FACEs.

The only tricky bit is calculating the video memory offset. This is only shown in
the example that comes with the S3D SDK, but what you need to do is to call the
Lock method with the DDLOCK_SURFACEMEMORYPTR and DDLOCK_WAIT
flags (the wait flag isn't strictly necessary but the lock can actually fail if the GPU
was using the surface and i had that happen to me a few times, so it doesn't
hurt). Then cast the lpSurface to a ULONG and call S3DTK_LinearToPhysical
with the upper 20 bits (so that the lower 12 bits remain as-is) and then subtract
from the framebuffer's base. A utility function can be something like:

function LinearToPhysical(Linear: ULONG): ULONG;
begin

Result:=S3DTK_LinearToPhysical(Linear and $FFFFF000) +
(Linear and $FFF);

end;

and used like (Surface is a IDirectDrawSurface, ddsd is a TDDSurfaceDesc
variable and s3ds is a TS3DTK_SURFACE variable):

ddsd.dwSize:=SizeOf(ddsd);
if Failed(Surface.Lock(nil, ddsd, DDLOCK_SURFACEMEMORYPTR or

DDLOCK_WAIT, 0)) then
Halt; // ...or a more graceful way to handle the error :-P

s3ds.sfOffset:=LinearToPhysical(ULONG(ddsd.lpSurface)) -
FramebufferPhysical;

Surface.Unlock(nil);

The FramebufferPhysical variable is a global you obtain after the library and
renderer have been created (S3D is a pointer to TS3DTK_FUNCTION_LIST and
FramebufferLinear is a PByte - though it can be any pointer type really):

S3Dˆ.S3DTK_GetState(S3D,
S3DTK_VIDEOMEMORYADDRESS,
ULONG(@LinearAddress));

FramebufferPhysical:=LinearToPhysical(ULONG(LinearAddress));

S3D Pascal Bindings

See S3DTK_GetState for information about the states you can query.

3. Reference

Below are the types exposed by the S3DTK unit. Note that all types use a T pre-
fix as is common in Pascal naming conventions and they also have a pointer
equivalent with a P prefix (e.g. PS3DTK_LIB_INIT for TS3DTK_LIB_INIT):

• TS3DTKVALUE - The floating point type used by S3D.
• TS3DTK_LIB_INIT - Library initialization parameters.
• TS3DTK_RENDERER_INITSTRUCT - Renderer creation parameters.
• TS3DTK_SURFACE - Describes an S3D surface used for framebuffer, zbuffer

and textures.
• TS3DTK_RECTAREA - A rectangular area. This is really an alias for Win-

dows' RECT type.
• TS3DTK_VERTEX_LIT - A vertex with color information without texture coor-

dinates.
• TS3DTK_VERTEX_TEX - A vertex with color information without texture coor-

dinates.
• TS3DTK_FUNCTION_LIST - S3D renderer function pointers.
• PS3DTK_LIB_INIT - Pointer to TS3DTK_LIB_INIT.
• PS3DTK_RENDERER_INITSTRUCT - Pointer to TS3DTK_REN-

DERER_INITSTRUCT.
• PS3DTK_SURFACE - Pointer to TS3DTK_SURFACE.
• PS3DTK_RECTAREA - Pointer to TS3DTK_RECTAREA.
• PS3DTK_VERTEX_LIT - Pointer to TS3DTK_VERTEX_LIT.
• PS3DTK_VERTEX_TEX - Pointer to TS3DTK_VERTEX_TEX.
• PS3DTK_FUNCTION_LIST - Pointer to TS3DTK_FUNCTION_LIST.

Also the exposed functions:

• S3DTK_InitLib - Initialize the library.
• S3DTK_ExitLib - Shut down the library.
• S3DTK_CreateRenderer - Create a renderer instance and provide functions

for accessing it.
• S3DTK_DestroyRenderer - Create a renderer instance and provide functions

for accessing it.
• S3DTK_PhysicalToLinear - Map a physical address and size to a linear ad-

dress.
• S3DTK_LinearToPhysical - Find the physical address the given linear address

is mapped.
• S3DTK_EnterCritical - Serialize access to S3D among threads.
• S3DTK_ReleaseCritical - Release the previously obtain critical section.

3.1. Types Reference

Note that all types use a T prefix as is common in Pascal naming conventions
and they also have a pointer equivalent with a P prefix (e.g. PS3DTK_LIB_INIT
for TS3DTK_LIB_INIT):

S3D Pascal Bindings

• TS3DTKVALUE - The floating point type used by S3D.
• TS3DTK_LIB_INIT - Library initialization parameters.
• TS3DTK_RENDERER_INITSTRUCT - Renderer creation parameters.
• TS3DTK_SURFACE - Describes an S3D surface used for framebuffer, zbuffer

and textures.
• TS3DTK_RECTAREA - A rectangular area. This is really an alias for Win-

dows' RECT type.
• TS3DTK_VERTEX_LIT - A vertex with color information without texture coor-

dinates.
• TS3DTK_VERTEX_TEX - A vertex with color information without texture coor-

dinates.
• TS3DTK_FUNCTION_LIST - S3D renderer function pointers.
• PS3DTK_LIB_INIT - Pointer to TS3DTK_LIB_INIT.
• PS3DTK_RENDERER_INITSTRUCT - Pointer to TS3DTK_REN-

DERER_INITSTRUCT.
• PS3DTK_SURFACE - Pointer to TS3DTK_SURFACE.
• PS3DTK_RECTAREA - Pointer to TS3DTK_RECTAREA.
• PS3DTK_VERTEX_LIT - Pointer to TS3DTK_VERTEX_LIT.
• PS3DTK_VERTEX_TEX - Pointer to TS3DTK_VERTEX_TEX.
• PS3DTK_FUNCTION_LIST - Pointer to TS3DTK_FUNCTION_LIST.

3.1.1. TS3DTKVALUE

The floating point type used by S3D.

Declaration:

TS3DTKVALUE = Single;

Unit: S3DTK

3.1.2. TS3DTK_LIB_INIT

Library initialization parameters.

Declaration:

TS3DTK_LIB_INIT = record
libFlags: ULONG;
libVideoBufferLinAddr: ULONG;
libMMIOSpaceLinAddr: ULONG;

end;

Fields:

• libFlags - Flags for initialization, must be S3DTK_INITPIO. For making a win-
dowed application this should also be OR'd with
S3DTK_INIT2D_SERIALIZATION_ON.

S3D Pascal Bindings

• libVideoBufferLinAddr - Reserved and must be 0.
• libMMIOSpaceLinAddr - Reserved and must be 0.

Description:

Using this type is not really necessary for fullscreen applications as the default
assumption when calling S3DTK_InitLib with a nil parameter is to use the
S3DTK_INITPIO flag.

Unit: S3DTK

See Also:

S3DTK_InitLib

3.1.3. TS3DTK_RENDERER_INITSTRUCT

Renderer creation parameters.

Declaration:

TS3DTK_RENDERER_INITSTRUCT = record
initFlags: ULONG;
initUserID: ULONG;
initAppID: ULONG;

end;

Fields:

• initFlags - Flags for renderer initialization. Can be a logical OR of any of the
flags mentioned below.

• initUserID - Reserved and must be 0.
• initAppID - Reserved and must be 0.

Description:

The flags field must be one of the following:

• S3DTK_FORMAT_FLOAT - Vertices use a floating point format.
• S3DTK_FORMAT_UVRANGE - Ensure the UV coordinates in texture map-

ping are within a range of 128 units. Setting this flag can make things a bit
slower.

• S3DTK_FORMAT_XYRANGE - Ensure the XY coordinates when rendering
are always within the rendering viewport. Setting this flag can make things a
bit slower too.

Using this type is not really necessary as S3DTK_CreateRenderer will assume
all of the above flags when a nil pointer is passed for initialization.

S3D Pascal Bindings

Unit: S3DTK

See Also:

S3DTK_CreateRenderer

3.1.4. TS3DTK_SURFACE

Describes an S3D surface used for framebuffer, zbuffer and textures.

Declaration:

TS3DTK_SURFACE = record
sfOffset: ULONG;
sfWidth: ULONG;
sfHeight: ULONG;
sfFormat: ULONG;
reserved: array [0..4] of ULONG;

end;

Fields:

• sfOffset - Where in memory the surface is, depends on where the surface re-
sides.

• sfWidth - Surface width.
• sfHeight - Surface height.
• sfFormat - Pixel or texel format, can be one of the values below.
• reserved - Reserved, should be set to 0s.

Description:

For surfaces containing drawable 2D image data (e.g. framebuffer, sprites, etc),
the format can be one of the following values:

• S3DTK_VIDEORGB8 - 8bit per pixel where each pixel is a palette index.
• S3DTK_VIDEORGB15 - 16bit per pixel with a 0RRRRRGGGGGBBBBB ar-

rangement (5 bits per component).
• S3DTK_VIDEORGB24 - 24bit per pixel with a RRRRRRRRGGGGGGGG-

BBBBBBBB arrangement.

For textures the format can be one of the following values:

• S3DTK_TEXARGB8888 - 32bit per texel with a AAAAAAAAR-
RRRRRRRGGGGGGGGBBBBBBBB arrangement.

• S3DTK_TEXARGB4444 - 16bit per texel with a AAAARRRRGGGGBBBB ar-
rangement.

• S3DTK_TEXARGB1555 - 16bit per texel with a ARRRRRGGGGGBBBBB ar-
rangement.

• S3DTK_TEXPALETTIZED8 - 8bit per texel where each texel is a palette in-
dex.

S3D Pascal Bindings

For zbuffers the only acceptable value is S3DTK_Z16 for 16bit per pixel.

Surface location:

Surfaces can reside in either video or system memory. When a surface is in sys-
tem memory the sfOffset field is the linear memory address (a 32bit pointer
casted to ULONG) and their format must be OR'd with S3DTK_SYSTEM. For
surfaces in video memory the field is actually the offset from the framebuffer
which can be calculated as explained in the Quickstart section. The format can
be OR'd with S3DTK_VIDEO but this is just for documentation purposes as the
value of that constant is 0.

Unit: S3DTK

See Also:

S3DTK_LinearToPhysical

3.1.5. TS3DTK_RECTAREA

A rectangular area. This is really an alias for Windows' RECT type.

Declaration:

TS3DTK_RECTAREA = Windows.TRECT;

Fields:

• Left - Leftmost pixel.
• Top - Topmost pixel.
• Right - Rightmost pixel.
• Bottom - Bottommost pixel.

Description:

Note that often the Right and Bottom values are not inclusive!

Unit: S3DTK

3.1.6. TS3DTK_VERTEX_LIT

A vertex with color information without texture coordinates.

Declaration:

TS3DTK_VERTEX_LIT = record
X: TS3DTKVALUE;
Y: TS3DTKVALUE;
Z: TS3DTKVALUE;
W: TS3DTKVALUE;
B: BYTE;

S3D Pascal Bindings

G: BYTE;
R: BYTE;
A: BYTE;

end;

Fields:

• X - X coordinate in screen space (pixels). Remember that TS3DTKVALUE is a
floating point type - vertices can lie “between” pixels. This must be a value be-
tween 0 to 4095, inclusive.

• Y - Y coordinate in screen space. Similar to X. Also must be between 0 to
4095.

• Z - Z value to use for z buffering. Only 16bit zbuffers are supported so this
must be a value between 0 to 65535.

• W - Ignored.
• B - Blue component for the color.
• G - Green component for the color.
• R - Red component for the color.
• A - Alpha component for the color, used for alpha blending and fog density.

Description:

This record is used to draw triangles without any texture applied to them (ie.
gouraud shading). The W field is ignored and only exists so that the same vertex
data can be used for both textured and untextured rendering.

Unit: S3DTK

See Also:

TS3DTK_VERTEX_TEX

3.1.7. TS3DTK_VERTEX_TEX

A vertex with color information without texture coordinates.

Declaration:

TS3DTK_VERTEX_TEX = record
X: TS3DTKVALUE;
Y: TS3DTKVALUE;
Z: TS3DTKVALUE;
W: TS3DTKVALUE;
B: BYTE;
G: BYTE;
R: BYTE;
A: BYTE;
D: TS3DTKVALUE;
U: TS3DTKVALUE;

S3D Pascal Bindings

V: TS3DTKVALUE;
end;

Fields:

• X - X coordinate in screen space (pixels). Remember that TS3DTKVALUE is a
floating point type - vertices can lie “between” pixels. This must be a value be-
tween 0 to 4095, inclusive.

• Y - Y coordinate in screen space. Similar to X. Also must be between 0 to
4095.

• Z - Z value to use for z buffering. Only 16bit zbuffers are supported so this
must be a value between 0 to 65535.

• W - Actually Z value in clip space, used for perspective texture mapping.
• B - Blue component for the color.
• G - Green component for the color.
• R - Red component for the color.
• A - Alpha component for the color, used for alpha blending and fog density.
• D - Level of detail for mipmapped textures - this can be filled by the library.
• U - U texture coordinate in texels (this is not normalized, the middle of a

32x32 texture is at 16 not at 0.5). Must be between 0 and 2047, inclusive.
• V - V texture coordinate in texels. Similar to U.

Description:

This record is used to draw triangles with texture mapping applied to them.

Unit: S3DTK

See Also:

TS3DTK_VERTEX_LIT

3.1.8. TS3DTK_FUNCTION_LIST

S3D renderer function pointers.

Declaration:

TS3DTK_FUNCTION_LIST = record
S3DTK_SetState: function(

pFuncStruct: Pointer;
State: ULONG;
Value: ULONG): ULONG; cdecl;

S3DTK_GetState: function(
pFuncStruct: Pointer;
State: ULONG;
Value: ULONG): ULONG; cdecl;

S3DTK_TriangleSet: function(
pFuncStruct: Pointer;

S3D Pascal Bindings

pVertexSet: PULONG;
NumVertexes: ULONG;
SetType: ULONG): ULONG; cdecl;

S3DTK_TriangleSetEx: function(
pFuncStruct: Pointer;
pVertexSet: PULONG;
NumVertexes: ULONG;
SetType: ULONG;
pSetState: PULONG;
NumStates: ULONG): ULONG; cdecl;

S3DTK_BitBlt: function(
pFuncStruct: Pointer;
pDestSurface: TS3DTK_LPSURFACE;
pDestRect: TS3DTK_LPRECTAREA;
pSrcSurface: TS3DTK_LPSURFACE;
pSrcRect: TS3DTK_LPRECTAREA): ULONG; cdecl;

S3DTK_BitBltTransparent: function(
pFuncStruct: Pointer;
pDestSurface: TS3DTK_LPSURFACE;
pDestRect: TS3DTK_LPRECTAREA;
pSrcSurface: TS3DTK_LPSURFACE;
pSrcRect: TS3DTK_LPRECTAREA;
TransparentColor: ULONG): ULONG; cdecl;

S3DTK_RectFill: function(
pFuncStruct: Pointer;
pDestSurface: TS3DTK_LPSURFACE;
pDestRect: TS3DTK_LPRECTAREA;
FillPattern: ULONG): ULONG; cdecl;

S3DTK_GetLastError: function(
pFuncStruct: Pointer): Integer; cdecl;

end;

Methods:

• S3DTK_SetState - Set a S3D state.
• S3DTK_GetState - Get a S3D state.
• S3DTK_TriangleSet - Draw triangles.
• S3DTK_TriangleSetEx - Set state and draw triangles.
• S3DTK_BitBlt - Copy a rectangular area from one surface to another.
• S3DTK_BitBltTransparent - Copy a rectangular area from one surface to an-

other with color keying.
• S3DTK_RectFill - Fill a rectangular area in video memory with the given

value.
• S3DTK_GetLastError - Provides details for a failed call.

Description:

S3D Pascal Bindings

This record contains the function pointers returned by S3DTK_CreateRenderer
that can be used to make calls to the renderer, like altering its state, drawing tri-
angles, etc.

Unit: S3DTK

See Also:

S3DTK_CreateRenderer

3.1.8.1. S3DTK_SetState

Set a S3D state.

Method of:

TS3DTK_FUNCTION_LIST

Syntax:

S3DTK_SetState: function(
pFuncStruct: Pointer;
State: ULONG;
Value: ULONG): ULONG; cdecl;

Parameters:

• pFuncStruct - Pointer to the TS3DTK_FUNCTION_LIST that contains this
method.

• State - One of the state constants described below.
• Value - The new state. The actual value depends on the state constant.

Returns:

S3DTK_OK if successful, S3DTK_ERR otherwise.

Description:

Set a new S3D state. The actual state will be applied once new triangles are ren-
dered.

States:

The valid values for the State parameter and the potential values the Value pa-
rameter can have are the following:

• S3DTK_ALPHABLENDING - Controls alpha blending. The value can be one
of S3DTK_ALPHAOFF, which disables alpha blending,
S3DTK_ALPHATEXTURE, which enables alpha blending and takes alpha
from the texture or S3DTK_ALPHASOURCE, which enables alpha blending
and takes alpha from the value stored in the vertices. Note that when fog is

S3D Pascal Bindings

enabled this cannot be S3DTK_ALPHASOURCE since the alpha value in the
vertices is used to control fog density.

• S3DTK_CLIPPING_AREA - Value is a pointer to a TS3DTK_RECTAREA that
contains the clipping rectangle inside the rendering surface.

• S3DTK_D_LEVEL_SUPPLIED - If this is set to S3DTK_ON the library will
use the D values for mipmapping provided by the vertex data, otherwise it will
be calculated automatically (default is off).

• S3DTK_DRAWSURFACE - Value is a pointer to a TS3DTK_SURFACE that
will be used for all further rendering operations.

• S3DTK_FOGCOLOR - Controls fog. If the value is S3DTK_FOGOFF (the de-
fault), the fog will be turned off. Otherwise the value controls the fog color
which is calculated by mixing the color to be written with the fog color using
the alpha value stored in the vertex data (i.e. final_pixel = (1.0 - alpha) * fog +
alpha * color_to_be_written). The fog color must be in the same format as the
current draw surface. Note that fog cannot be used at the same time as alpha
blending with vertex sourced alpha values.

• S3DTK_RENDERINGTYPE - Controls how to render the triangles. Can be
one of S3DTK_GOURAUD, which only uses vertex colors,
S3DTK_LITTEXTURE, which performs affine texture mapping and blends the
texture colors with the vertex colors, S3DTK_UNLITTEXTURE, which per-
forms affine texture mapping while ignoring vertex colors,
S3DTK_LITTEXTUREPERSPECT, which performs perspective correct tex-
ture mapping and blends the texture colors with the vertex colors or
S3DTK_UNLITTEXTUREPERSPECT which performs perspective correct tex-
ture mapping while ignoring vertex colors.

• S3DTK_TEXBLENDINGMODE - Controls how to combine the texture colors
with the vertex colors and can be either S3DTK_TEXMODULATE which mul-
tiplies the colors together or S3DTK_TEXDECAL which blends the two colors
using the alpha value stored in the texture.

• S3DTK_TEXFILTERINGMODE - Texture filtering mode, can be one of
S3DTK_NEAREST, S3DTK_LINEAR, S3DTK_MIP_NEAREST,
S3DTK_LINEAR_MIP_NEAREST, S3DTK_MIP_LINEAR or
S3DTK_LINEAR_MIP_LINEAR.

• S3DTK_TEXTUREACTIVE - Value is a pointer to a TS3DTK_SURFACE for
the texture to use when drawing triangles with a render type that uses tex-
tures (ie. anything other than S3DTK_GOURAUD).

• S3DTK_ZBUFFERCOMPAREMODE - Controls zbuffer compare mode. Can
be one of S3DTK_ZNEVERPASS (never passes the z test),
S3DTK_ZSRCGTZFB (rendered > already there), S3DTK_ZSRCEQZFB
(rendered = already there), S3DTK_ZSRCGEZFB (rendered >= already
there), S3DTK_ZSRCLSZFB (rendered < already there),
S3DTK_ZSRCNEZFB (rendered <> already there), S3DTK_ZSRCLEZFB
(rendered <= already there), S3DTK_ZALWAYSPASS (always pass the z
test).

• S3DTK_ZBUFFERENABLE - Enable or disable z buffering, can be
S3DTK_ON or S3DTK_OFF.

• S3DTK_ZBUFFERSURFACE - Pointer to a TS3DTK_SURFACE to be used
as a zbuffer.

S3D Pascal Bindings

• S3DTK_ZBUFFERUPDATEENABLE - When this is set to S3DTK_ON (de-
fault) the zbuffer is updated with new values as pixels are drawn on the draw
buffer. Setting this to S3DTK_OFF will not disable any writes (comparisons
are still being made).

Some state values are actually pointers, in which case the pointers must be
casted to ULONG.

Unit: S3DTK

See Also:

S3DTK_GetState (in TS3DTK_FUNCTION_LIST)

3.1.8.2. S3DTK_GetState

Get a S3D state.

Method of:

TS3DTK_FUNCTION_LIST

Syntax:

S3DTK_GetState: function(
pFuncStruct: Pointer;
State: ULONG;
Value: ULONG): ULONG; cdecl;

Parameters:

• pFuncStruct - Pointer to the TS3DTK_FUNCTION_LIST that contains this
method.

• State - One of the state constants described below.
• Value - Pointer to memory that will receive the data (yes, this is really meant

to be a pointer).

Returns:

S3DTK_OK if successful, S3DTK_ERR otherwise.

States:

The valid values for the State parameter and the potential values the Value pa-
rameter can have are listed in S3DTK_SetState. In addition to the values listed
there, the following values can also be queried:

• S3DTK_VERSION - Returns the version of the S3D library in a ULONG. The
format is $MMmm where MM is the major version and mm is the minor ver-
sion.

S3D Pascal Bindings

• S3DTK_VIDEOMEMORYADDRESS - Returns the linear address of the video
memory. Use S3DTK_LinearToPhysical to convert it to a physical address that
can be used for calculating offsets for surfaces in video memory.

• S3DTK_DISPLAYADDRESSUPDATED - If this is S3DTK_YES the display
address has changed.

• S3DTK_GRAPHICS_ENGINE_IDLE - Returns S3DTK_TRUE if the S3D en-
gine is idle. This could be useful for updating textures, however using
DDLOCK_WAIT during locking is actually simpler.

Unit: S3DTK

See Also:

S3DTK_SetState (in TS3DTK_FUNCTION_LIST)

3.1.8.3. S3DTK_TriangleSet

Draw triangles.

Method of:

TS3DTK_FUNCTION_LIST

Syntax:

S3DTK_TriangleSet: function(
pFuncStruct: Pointer;
pVertexSet: PULONG;
NumVertexes: ULONG;
SetType: ULONG): ULONG; cdecl;

Parameters:

• pFuncStruct - Pointer to the TS3DTK_FUNCTION_LIST that contains this
method.

• pVertexSet - A pointer to an array of pointers where each pointer points to a
TS3DTK_VERTEX_LIT or TS3DTK_VERTEX_TEX.

• NumVertexes - Number of vertices to draw from the array.
• SetType - The type of primitives. This can be one of S3DTK_TRILIST,

S3DTK_TRISTRIP or S3DTK_TRIFAN. See below.

Returns:

S3DTK_OK if successful, S3DTK_ERR otherwise.

Description:

This can be used to draw triangles in the form of a list of N/3 separate triangles, a
triangle strip made out of N-2 triangles where after the first triangle the rest are
defined by the shared edge following a zig-zag pattern or triangle fan made out of

S3D Pascal Bindings

N-2 triangles where the first vertex is shared by all triangles and the other ver-
tices specify the non-shared edges.

Notice that vertex data is specified as an array of pointers, which allows reuse of
shared vertices by having the same vertex pointed to by different pointers.

Unit: S3DTK

See Also:

S3DTK_TriangleSetEx (in TS3DTK_FUNCTION_LIST)

3.1.8.4. S3DTK_TriangleSetEx

Set state and draw triangles.

Method of:

TS3DTK_FUNCTION_LIST

Syntax:

S3DTK_TriangleSetEx: function(
pFuncStruct: Pointer;
pVertexSet: PULONG;
NumVertexes: ULONG;
SetType: ULONG
pSetState: PULONG;
NumStates: ULONG): ULONG; cdecl;

Parameters:

• pFuncStruct - Pointer to the TS3DTK_FUNCTION_LIST that contains this
method.

• pVertexSet - A pointer to an array of pointers where each pointer points to a
TS3DTK_VERTEX_LIT or TS3DTK_VERTEX_TEX.

• NumVertexes - Number of vertices to draw from the array.
• SetType - The type of primitives. This can be one of S3DTK_TRILIST,

S3DTK_TRISTRIP or S3DTK_TRIFAN.
• pSetState - Pointer to an array of ULONG key-value pairs.
• NumStates - The number of pairs in the array.

Returns:

S3DTK_OK if successful, S3DTK_ERR otherwise.

Description:

This is the same as a combination of S3DTK_SetState followed by S3DTK_Trian-
gleSet. The values for the state are the same as the former.

S3D Pascal Bindings

Unit: S3DTK

See Also:

S3DTK_TriangleSet (in TS3DTK_FUNCTION_LIST), S3DTK_SetState (in
TS3DTK_FUNCTION_LIST)

3.1.8.5. S3DTK_BitBlt

Copy a rectangular area from one surface to another.

Method of:

TS3DTK_FUNCTION_LIST

Syntax:

S3DTK_BitBlt: function(
pFuncStruct: Pointer;
pDestSurface: TS3DTK_LPSURFACE;
pDestRect: TS3DTK_LPRECTAREA;
pSrcSurface: TS3DTK_LPSURFACE;
pSrcRect: TS3DTK_LPRECTAREA): ULONG; cdecl;

Parameters:

• pFuncStruct - Pointer to the TS3DTK_FUNCTION_LIST that contains this
method.

• pDestSurface - Pointer to TS3DTK_SURFACE for the destination surface. The
destination surface must be in video memory.

• pDestRect - Pointer to a TS3DTK_RECTAREA for the area in the destination
surface to write to.

• pSrcSurface - Pointer to a TS3DTK_SURFACE for the source surface.
• pSrcRect - Pointer to a TS3DTK_RECTAREA for the area in the source sur-

face to copy from.

Returns:

S3DTK_OK if successful, S3DTK_ERR otherwise.

Limitations:

Both surfaces must have the same pixel format and size. Also the destination sur-
face must be in video memory.

Unit: S3DTK

See Also:

S3D Pascal Bindings

S3DTK_BitBltTransparent (in TS3DTK_FUNCTION_LIST)

3.1.8.6. S3DTK_BitBltTransparent

Copy a rectangular area from one surface to another with color keying.

Method of:

TS3DTK_FUNCTION_LIST

Syntax:

S3DTK_BitBltTransparent: function(
pFuncStruct: Pointer;
pDestSurface: TS3DTK_LPSURFACE;
pDestRect: TS3DTK_LPRECTAREA;
pSrcSurface: TS3DTK_LPSURFACE;
pSrcRect: TS3DTK_LPRECTAREA;
TransparentColor: ULONG): ULONG; cdecl;

Parameters:

• pFuncStruct - Pointer to the TS3DTK_FUNCTION_LIST that contains this
method.

• pDestSurface - Pointer to a TS3DTK_SURFACE for the destination surface.
The destination surface must be in video memory.

• pDestRect - Pointer to a TS3DTK_RECTAREA for the area in the destination
surface to write to.

• pSrcSurface - Pointer to a TS3DTK_SURFACE for the source surface.
• pSrcRect - Pointer to a TS3DTK_RECTAREA for the area in the source sur-

face to copy from.
• TransparentColor - The color key that marks the transparent pixels.

Returns:

S3DTK_OK if successful, S3DTK_ERR otherwise.

Description:

This works similarly to S3DTK_BitBlt but it also performs color keying against the
specified color. The value depends on the format of the surface - for 8bit surfaces
this is the index of the palette color whereas for 15bit surfaces this is the value to
check for (only the lower 15 bits are taken into account).

Limitations:

Both surfaces must have the same pixel format and size. Also the destination sur-
face must be in video memory. This only supports S3DTK_VIDEORGB8 and
S3DTK_VIDEORGB15 formats. Other formats are not supported.

S3D Pascal Bindings

Unit: S3DTK

See Also:

S3DTK_BitBlt (in TS3DTK_FUNCTION_LIST)

3.1.8.7. S3DTK_RectFill

Fill a rectangular area in video memory with the given value.

Method of:

TS3DTK_FUNCTION_LIST

Syntax:

S3DTK_RectFill: function(
pFuncStruct: Pointer;
pDestSurface: TS3DTK_LPSURFACE;
pDestRect: TS3DTK_LPRECTAREA;
FillPattern: ULONG

Parameters:

• pFuncStruct - Pointer to the TS3DTK_FUNCTION_LIST that contains this
method.

• pDestSurface - Pointer to a TS3DTK_SURFACE for the destination surface.
The destination surface must be in video memory.

• pDestRect - Pointer to a TS3DTK_RECTAREA for the area in the destination
surface to fill.

• FillPattern - The value to fill. This must match the surface format.

Returns:

S3DTK_OK if successful, S3DTK_ERR otherwise.

Description:

This can be used to clear the draw buffer and zbuffer or fill parts of them.

Unit: S3DTK

3.1.8.8. S3DTK_GetLastError

Provides details for a failed call.

Method of:

TS3DTK_FUNCTION_LIST

S3D Pascal Bindings

Syntax:

S3DTK_GetLastError: function(
pFuncStruct: Pointer): Integer; cdecl;

Parameters:

• pFuncStruct - Pointer to the TS3DTK_FUNCTION_LIST that contains this
method.

Returns:

One of the error codes described below.

Description:

When a function returns S3DTK_ERR this function can be used right next to pro-
vide additional information about the error. Note that this function is only usable
with function calls made after S3DTK_CreateRenderer.

The possible error codes are:

• S3DTK_CANTCONVERT - Cannot convert form linear to physical address.
• S3DTK_INVALIDFILTERINGMODE - Invalid filtering mode.
• S3DTK_INVALIDSURFACEFORMAT - Invalid surface format.
• S3DTK_INVALIDRENDERINGTYPE - Invalid rendering type.
• S3DTK_INVALIDVALUE - Invalid value.
• S3DTK_NULLPOINTER - Unexpected nil pointer.
• S3DTK_RENDERINGSURFISNOTSET - There is no surface set for rendering

to.
• S3DTK_UNSUPPORTEDKEY - Unsupported state constant.
• S3DTK_UNSUPPORTEDMETHOD - Tried to call an unsupported method.
• S3DTK_UNSUPPORTEDVIDEOMODE - (this is really only available on DOS)

Unit: S3DTK

3.1.9. PS3DTK_LIB_INIT

Pointer to TS3DTK_LIB_INIT.

Declaration:

PS3DTK_LIB_INIT = ˆTS3DTK_LIB_INIT;

Unit: S3DTK

3.1.10. PS3DTK_RENDERER_INITSTRUCT

Pointer to TS3DTK_RENDERER_INITSTRUCT.

S3D Pascal Bindings

Declaration:

PS3DTK_RENDERER_INITSTRUCT = ˆTS3DTK_RENDERER_INITSTRUCT;

Unit: S3DTK

3.1.11. PS3DTK_SURFACE

Pointer to TS3DTK_SURFACE.

Declaration:

PS3DTK_SURFACE = ˆTS3DTK_SURFACE;

Unit: S3DTK

3.1.12. PS3DTK_RECTAREA

Pointer to TS3DTK_RECTAREA.

Declaration:

PS3DTK_RECTAREA = ˆTS3DTK_RECTAREA;

Unit: S3DTK

3.1.13. PS3DTK_VERTEX_LIT

Pointer to TS3DTK_VERTEX_LIT.

Declaration:

PS3DTK_VERTEX_LIT = ˆTS3DTK_VERTEX_LIT;

Unit: S3DTK

3.1.14. PS3DTK_VERTEX_TEX

Pointer to TS3DTK_VERTEX_TEX.

Declaration:

PS3DTK_VERTEX_TEX = ˆTS3DTK_VERTEX_TEX;

Unit: S3DTK

3.1.15. PS3DTK_FUNCTION_LIST

Pointer to TS3DTK_FUNCTION_LIST.

Declaration:

S3D Pascal Bindings

PS3DTK_FUNCTION_LIST = ˆTS3DTK_FUNCTION_LIST;

Unit: S3DTK

3.2. Function Reference

• S3DTK_InitLib - Initialize the library.
• S3DTK_ExitLib - Shut down the library.
• S3DTK_CreateRenderer - Create a renderer instance and provide functions

for accessing it.
• S3DTK_DestroyRenderer - Create a renderer instance and provide functions

for accessing it.
• S3DTK_PhysicalToLinear - Map a physical address and size to a linear ad-

dress.
• S3DTK_LinearToPhysical - Find the physical address the given linear address

is mapped.
• S3DTK_EnterCritical - Serialize access to S3D among threads.
• S3DTK_ReleaseCritical - Release the previously obtain critical section.

3.2.1. S3DTK_InitLib

Initialize the library.

Syntax:

function S3DTK_InitLib(
lParam: ULONG): ULONG; cdecl;

Parameters:

• lParam - Pointer to a TS3DTK_LIB_INIT with initialization settings or 0 to use
the default settings (equivalent to passing just S3DTK_INITPIO for fullscreen
applications).

Returns:

S3DTK_OK if successful, S3DTK_3DCAPNOTSUPPORTED if the hardware
does not support 3D rendering, S3DTK_CANTCONVERT if the linear address of
the video buffer cannot be determined (this shouldn't happen under Windows) or
S3DTK_NOS3KERNEL if the kernel device driver is not installed (in case you
distribute the S3DTKW.DLL yourself but rely on the driver to be preinstalled.

Note:

After calling this function to initialize the library you should call S3DTK_Cre-
ateRenderer to create the renderer and obtain the functions for performing ren-
dering calls.

Unit: S3DTK

S3D Pascal Bindings

See Also:

S3DTK_CreateRenderer, S3DTK_ExitLib

3.2.2. S3DTK_ExitLib

Shut down the library.

Syntax:

function S3DTK_ExitLib: ULONG; cdecl;

Returns:

S3DTK_OK if successful, S3DTK_ERR otherwise.

Note:

Before calling this function ensure that the renderer has been destroyed by call-
ing S3DTK_DestroyRenderer.

Unit: S3DTK

See Also:

S3DTK_DestroyRenderer, S3DTK_InitLib

3.2.3. S3DTK_CreateRenderer

Create a renderer instance and provide functions for accessing it.

Syntax:

function S3DTK_CreateRenderer(
Param1: ULONG;
ppFunctionList: PPointer): ULONG; cdecl;

Parameters:

• Param1 - Pointer to a TS3DTK_RENDERER_INITSTRUCT with initialization
settings or 0 to use the default settings (equivalent to passing the flags
S3DTK_FORMAT_FLOAT, S3DTK_FORMAT_UVRANGE and
S3DTK_FORMAT_XYRANGE OR'd together - note that this can be subopti-
mal if the application performs clipping!).

• ppFunctionList - Pointer to a TS3DTK_FUNCTION_LIST to receive function
pointers for performing renderer calls.

Returns:

S3DTK_OK if successful, S3DTK_ERR otherwise.

S3D Pascal Bindings

Unit: S3DTK

See Also:

S3DTK_InitLib, S3DTK_DestroyRenderer

3.2.4. S3DTK_DestroyRenderer

Create a renderer instance and provide functions for accessing it.

Syntax:

function S3DTK_DestroyRenderer(
ppFunctionList: PPointer): ULONG; cdecl;

Parameters:

• ppFunctionList - The TS3DTK_FUNCTION_LIST pointer that S3DTK_Cre-
ateRenderer returned.

Returns:

S3DTK_OK if successful, S3DTK_ERR otherwise.

Unit: S3DTK

See Also:

S3DTK_ExitLib, S3DTK_CreateRenderer

3.2.5. S3DTK_PhysicalToLinear

Map a physical address and size to a linear address.

Syntax:

function S3DTK_PhysicalToLinear(
PhysAddr: ULONG;
Size: ULONG): ULONG; cdecl;

Parameters:

• PhysAddr - The physical address.
• Size - Size of the area to be mapped.

Returns:

The linear address (can be cast to a pointer) or S3DTK_ERR.

Unit: S3DTK

S3D Pascal Bindings

See Also:

S3DTK_LinearToPhysical

3.2.6. S3DTK_LinearToPhysical

Find the physical address the given linear address is mapped.

Syntax:

function S3DTK_LinearToPhysical(
Linear: ULONG): ULONG; cdecl;

Parameters:

• Linear - The linear address (can be cast from a pointer).

Returns:

The physical address or S3DTK_ERR.

Unit: S3DTK

See Also:

TS3DTK_SURFACE, S3DTK_PhysicalToLinear

3.2.7. S3DTK_EnterCritical

Serialize access to S3D among threads.

Syntax:

function S3DTK_EnterCritical: ULONG; cdecl;

Returns:

S3DTK_OK if successful, S3DTK_ERR otherwise.

Description:

Together with S3DTK_ReleaseCritical this can be used to synchronize calls be-
tween threads using S3D. Note that there must not be any OS calls between
S3DTK_EnterCritical and S3DTK_ReleaseCritical.

Unit: S3DTK

See Also:

S3DTK_ReleaseCritical

S3D Pascal Bindings

3.2.8. S3DTK_ReleaseCritical

Release the previously obtain critical section.

Syntax:

function S3DTK_ReleaseCritical: ULONG; cdecl;

Returns:

Always S3DTK_OK.

Description:

Together with S3DTK_EnterCritical this can be used to synchronize calls be-
tween threads using S3D. Note that there must not be any OS calls between
S3DTK_EnterCritical and S3DTK_ReleaseCritical.

Unit: S3DTK

